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ABSTRACT 

The integrals which determine the physical parameters 

of chief interest in the cavity theory of Plesset and Shaffer 

are systematically considered.    Their numerical integrations 

are shown to be very accurate with the exception of the values 

for cavity size at low cavitation numbers.    Where necessary, 

these values have been replaced with accurate tabulations 

computed by use of suitable series expansions; also,  asymp- 

totic formulas valid for low cavitation numbers are presented. 
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SYMBOLS 

b. 

CD« 

C3D* 

V 
D, 

d. 

m 

Al, 

I, 

P. 

P. 

«V 

Poo' 

Q, 

R. 

S, 

length of wedge face   (Fig.   1). 

parameter fixing scale of problem, 

two-dimensional drag coefficient: 

three-dimensional drag coefficient: 
C3D=4PVi^d^- 

pressure coefficient: 
Cp-tp-pJ/ipvJ,  . 

drag force. 

width of base of wedge or cone. 

maximum width of cavity. 

Fourier coefficient.  See Eq. (43). 

Fourier coefficient.  See Eq.  (44). 

Fourier coefficient.  See Eq.  (44). 

integral defined by Eq.  (45). 

estimate of (I    , ,  - I   ) when n-»6. x n+ 1       n' 

integral defined by Eq.  (46). 

length of cavity (Fig.   6). 

pressure at any point, 

pressure in the cavity, 

pressure at infinity. 

Q(rf,p) = cos*sW[l^2] 

integral defined by Eq.  (49). 

integral defined by Eq.  (50). 

"4 

t, complex variable.   See Eq.  (2). 

v    ,     velocity at infinity, co ' ' 

v  ,       ratio of velocity at infinity to that 
on cavity wall. 

W,       complex potential:   W = U+iV. 

x, abscissa of maximum cavity width 
(Fig.   1). 

y, vertical distance from A to I 
(Fig.   1). 

dY,     dimensionless coordinate defined by 
Eq.  (9). 

Y,        integral defined by Eq. (13). 

z,        complex physical coordinate: 
z = x + iy. 

a, parameter related to cavitation 
number by Eq.   (4). 

P, wedge or cone half-angle. 

A, = M^.o) = (l-sin2a sin2fO"V2. 

A',       = A'(^.a) -(1 -cos2a cos2^)"3/2. 

£ ,        dimensionless complex velocity, 
normalized to unity on   AIA'. 

T\, complex variable. 

0, arg £  . 

\, X = 2P/TT . 

p, fluid density. 

<r, cavitation number. 

4, parameter (real). 

4>, argrj. 

Note:   The notation used for elliptic integrals   E,   K,   etc.,   is that of Ref.  8. 
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INTRODUCTION 

The usual criticism of the classical wake tneory    is that it fails to account 

for the large suction pressure on the downstream side of the body.      This objec- 

tion is in part overcome by the theory of Riabouchinsky  ,   who constructed a 

mathematical model of the wake flow around a flat plate by placing an image plate 

downstream with a wake region at constant underpressure in between.      Whatever 

the eventual usefulness of his theory for wake flows may be,   it is now certain 

that such a model is very helpful in cavity flow analysis.     Here the underpressure 

in the cavity is specified dimensionlessly by the cavitation number   <r,   defined by 

<r   = 

iP'co 
(I) 

where   p       and   v      are the pressure and velocity at infinity,    p,     is the pressure 

in the cavity,   and   p   is the liquid density.      Riabouchinsky's model may also be 

FREE    STREAMLINE 

IMAGE   WEDGE 

v.,   P. 

WEDGE 

Fig.   1.    The cavity flow about a symmetrical wedge 
according to Plesset and Shaffer. 

useful in finding two-dimensional strut shapes which have small tendency to cavi- 

tate,   since the cavity or wake may equally well be supposed to represent a body 

with constant pressure over most of its surface.      In any event,   Plesset and 
3 4  5 Shaffer   *   '     extended Riabouchinsky's theory to include symmetrical wedges 

(Fig.   1) with a view to applying the results to cavity flow problems.*    Their work 

* It should be remarked that many of Plesset and Shaffer's results have been 
given in an interesting report by J.  W. Fisher',  which has only recently been 
declassified. 



may also be regarded as an extension of the results of Bobyleff ,   who considered 

the symmetrical wedge with an infinite wake,   which corresponds to the cavity 

flow with zero cavitation number. 

The present report is concerned for tne most part with the evaluation of 

certain integrals in terms of which the cavity parameters of interest in Plesset 

and Shaffer's theory can be represented.      They computed these integrals numeri- 

cally,  in most cases with high accuracy,  thereby obtaining reliable values for the 

drag,   which was the chief concern in their investigations.      The cavity dimensions 

at high cavitation numbers were also accurately tabulated; the values for low 

cavitation numbers,   however,  are somewhat in error. 

Since there is much emphasis at present on applications where the cavita- 

tion number is small,   Professor Plesset suggested that the cavity dimensions 

might be computed analytically in this special case.      Such calculations have in- 

deed proved feasible so that it is now possible to evaluate the drag and cavity 

dimensions with reasonable accuracy for any case likely to occur in practice. 

The following pages give a summary of these calculations. 

THEORY OF PLESSET AND SHAFFER 

The theory of Plesset and Shaffer, which uses well-known methods of con- 

formal mapping to solve the two-dimensional potential flow problem,  will be out- 

lined here for reference only.     For a more complete exposition,  as well as for 

remarks on the comparison with experiment,   the reader should consult the original 
.3,4,5 report *   '  . 

In Fig. 2 is shown the hodograph- or   £ -plane   which can be constructed by 

inspection of the velocity along the streamline   KCAIA'C'K'   in the physical- or 

z-plane.     Also indicated is the plane of complex potential   W = U  k- iV,   which can 

be drawn immediately.     The mathematical problem can now be solved by con- 

formally mapping the   £ -plane onto the W-plane.      The mappings which effect 
this are 

C > (2a) 

(2b) 1 

W        =  ti -_     , (2c) 
(tan2a + tej* 

*  Plesset and Shaffer normalise the velocity to unity on the free streamline 
AIA1,  so that   £   is lb* rat-c of the reflected velocity to the velocity on   AIA'. 
Similarly,  the potentie '• dt-Hned by Plesset and Shaffer has the dimensions of 
length,  rather than le».«gi*> %';.»i velocity. 



where  r\   and   t   are auxiliary variable* as shown in Fig.  2.     These mappings, 

along with the fundamental property of the complex potential, 

dW r 

enable one in principle at least to calculate the potential at any point   z. 

(3) 

z-plane 

W « U* iV 

C' A' 

W-plane 

i « iU-) 
K    K 

i ton a 

TJ - plone 1 - plane 

Fig.  2.    The mappings corresponding to Eq.  (2 abc). 

The parameter   b   fixes the scale of the problem; since all results of the 

theory are presented in dimensionless form,  it disappears in the final equations. 
The parameter   a   may be related to   v     by calculating   |£|    at   K   in terms of 
W.     From Eq. (2abe) one finds that 

„ ~t&  _     1 - sin a 
cos a 

But application of Bernoulli's equation along the streamline   KCAIA*   in con- 

junction with Eq. (1) leads lo 

1 +<r 

and hence 

1 + <r 1 + sin a 
cos a 

,«£ 
(4) 



Since it is convenient to calculate the other parameters in terms of   a,    Table 1 

has been constructed for corresponding values of  «•   from Eq. (4). 

The set of equations (2abe) and (3) enable one to calculate the value of the 

velocity at any point in the E-plane,  and the shape of any streamline, including 

the cavity wall   AIA'.     Pies set and Shaffer calculated only the quantities of 

chief physical interest,  namely,  the pressure along   C A,    from which the drag 

may be obtained by integration,  and also the coordinates of the point   I,    defined 

by   x   and   y   (Fig.   1).     Each of these calculations will now be considered in 

turn. 

PRESSURE DISTRIBUTION 

Ii the pressure coefficient is defined,  as is customary,  by 

s - fat . 
Woo 

then from the definitions of    £   and   a   there results 

Cp      =    (l + r)[l -iCl8]-*   . 

If one puts   t = sec ^   along the wedge face   AC,    the pressure coefficient may be 

expressed as a function of the parameter   4   by use of Eq. (2ab).     For con- 

venience let   P(#\ P) = 1 - |£|* on Ac«     Then 

1 - sW 1   w 

COSfl 

so that 

Cp       =     (1+tr)  H4.P) -9   . (6) 

The total pressure on an element due to both the pressure   p   on the front and 

the suction   p.    on the back is given by 

=     (lt.)P(^P). (7) 

*»"i 
in order to find the point to which the pressure   p   corresponds,  it it 

necessary to integrate   dy   along AC.     Now from the relations above, 

ds     dw dy        -    it     oT"oT  dt 



or when the derivatives are evaluated, one has 

dy ^sin^/i-e^f ^S^- dt   . (8) 

However, along AC one may use the substitution t = sec 4 . Also, in what 

follows it is convenient to consider instead of d y the dimensionless variable 

d Y   defined by 

dY      =     ~(b ainp sin   a cos a)      dy . 

Then in terms of   4   one has 

dY      =     Q(«<,p) A(,U)d«< 

where 

and 

Then,  if 

Q(ff. P)     =     co»j<  sinjf 
1 + sinfrf 
cos 0 

li. 

A(^,a)      =     (1 - sin8 a sinV)-*8  . 

Y(^.a.p) =    I     dY(^,o.p) 

(9) 

(10) 

(11) 

(12) 

(13) 

the ordinate of the point in question is located by 

a sin p yfc&- (14) 

Therefore by picking values of   4' an<l then computing   C     and   y/a sinp   from 

Eqs. (6) and (14),  a plot of pressure distribution may be constructed.     An 

example for   <r = 0   is shown in Fig.  3. 

While   Y(4', a, p)   cannot be integrated in the general case,   several special 

cases can be evaluated.     For   p = IT/2,    Plesset and Shaffer give 

Y(l,a,ir/2)   =   sec*a co.fll4.inrt +   B(a)-F(a.,*)+lW) 
(1 - .in a sin f») 

(15) 

where   B(a),    F(a, 4),    and   D(a, 4')   *re elliptic integrals in the notation of Ref.  8. 

For   4' ~ 0,    this reduces to 

Y(0.a,w/2)   =   r—F 
cos a sin a 

2 Z sin  a + E - cos  a K (16) 
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Fig.   3.    The pressure distribution on a cavitating wedge (after 
Plesset and Shaffer).  The plot may also be used for any low cavitation 
number   v   by considering the ordinate to be a normalised pressure 
coefficient as indicated. 

Also, one has 

Y(4 0, W/2) =     CO •^• + 4- w/2 - ^ + sin*'" cos^ (17) 

If one considers the case   a = 0,   p / */2,  corresponding to Bobyleff's problem, 

the integrals are expressible in general in terms of the logarithmic derivative 
o 

of the gamma function. 

,* r 
Y(o,o,p, .4*JU.fc   ^(i.^-j-v^.JL) (18) 

where 

V(z) = ^ log r(z) . 



If   2p/w   is a proper fraction    2p/ir * p/q,    say,  where   p   and   q   are integers, 

the integrations may be performed in terms of elementary functions by the sub- 

stitution   t = (1 - sinfl)/(l + sine<)   and   t = z".     Then in terms of   z,    the integral 

is a rational function which may be integrated by standard procedures. 

For   o>0,    the binomial expansion 

A =   1+4 8in,° 8in2^ + TT 8in4<1 sin*^ + • •  •  • (19) 

may be employed to obtain 

ft 
Y(0, a, p)   =   Y(0. 0, p) + -| sin8a   I    sinV Q(a<, p) d^ + . .  . (20) 

where each integral in the series is now integrable by the same procedure as 

used for   Y(0, 0, p).     In actual practice,  it appears that the original tabulations 

of Plesset and Shaffer,  the accuracy of which can readily be checked by compari- 

son with these special cases,  will prove adequate for most likely applications. 

Their results are shown in Table 2,  where values for   a = 1    - 4     have been 

added by using the first two terms in Eq.  (20) as an interpolation formula. 

DRAG IN TWO DIMENSIONS 

If the drag coefficient   C„   due to a drag force   D   is defined as 

CD -   —B—    . (21) 
±PVcr>d 

where   d   is the width of the wedge base (Fig.   1),  one finds by integration of 

the total pressure on each element,   as given by Eq.  (7),   that 
ir 

f   P(^,p)dY(^,a,p) 
CD=   fr*1* V(O.a.p-)  l*« 

The remarks on the evaluation of   Y(0, o, P)   above also apply to the integral in 

the numerator.     In gene raj,   one can employ the expansion Eq.  (19) to obtain 

a series of known integrals.     For the special case corresponding to Bobyleff's 

problem the integration may be performed exactly to obtain 

/. 

IT 

P(^,p)dY(^,0,p)       =   -§   X^ (23) 
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Fig. 4.    The two- and three-dimensional drag coefficients 
at   (r = 0   as a function of   6. 

and for Riabouchinsky's case 

I. 
w 
7 
P(t,WZ)dYtf,a,n/Z) 

2 •   2 cos  a sin a 
E - cos  aK (24) 

where   E   and   K   are complete elliptic integrals.     Hence for these cases the 

drag coefficients are 

2 6a 

CD(0,p)     =  —  •    sinafy0t0(a) (25) 



!*»•• •«. 

where   Y(0, 0, p)   is given by Eq. (20) and* 

CD(a,»/2)   =   2(<r+l)    E(a) - co»*a K(a)       . (26) 

As before,  the tabulations of Plesset and Shaffer are in agreement with these 

formulas,  and are presented here for convenience in Table 3 (see also Fig. 4). 

DRAG IN THREE DIMENSIONS 

The preceding theory is not applicable to the three-dimensional case of an 

axially symmetrical flow,  but Plesset and Shaffer,  in view of the lack of any 

three-dimensional results,  proposed to estimate the drag for cones by assuming 

the distribution of pressure from center to edge was the same as for two dimen- 

sions.      It is now certain that this is a reasonable estimate,   useful enough for 

many purposes,   although a check of the assumption by experiment or other cal- 

culations would be of interest. 

In any event,   when the pressure is integrated on the cone,   one obtains for 

the drag coefficient in three dimensions 

I 
*-*• 2 

P(^,p) Y(^,o,p)d Y(^,Q,p) 

C =   2(<r+l)   £° . _ 3D [Y(o.«.p)]' 

(27) 

The integral in the numerator has been calculated by Plesset and Shaffer for the 

case    P = IT/2.      Using Eq.  (15) for   Y(^, a, IT/2),   they obtain 

7 

PYdY   =   sec4o 

'o 
.   2 L sin a 

n<^^g        +B*(o)l     . (28) 
sin a tan  a J 

In the event   <r - a = 0,    the integrations may be performed directly or the limit 

of the above expression taken to find 
J 

2 
2 *e 

P(^.p) Y(f*,<W2)d Ytf,0,w/2)   =   T   +    lV    ' <29> 

so the zero-cavitation number drag of a disk is 

* The formula for   CD   given by Plesset and Shaffer,  Eq.  (25),  Ref. 4, and 
Eq.  (25),  Ref.  5,  is incorrect by a factor of   2. 
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C3D(0,ir/2)   r-.   i^V;//16  =   °-8053 (30) 

The tabulations of Plesset and Shaffer for the drag coefficient are given in Table 

4 and are believed accurate enough for any engineering purpose (see also Fig. 4). 

CAVITY SHAPE IN TWO DIMENSIONS 

The location of the maximum width of the cavity (Fig.   1) is given by 

=    I    sinO  |dz| and x   =    I 

JAT «J A 

y   x    I    sinO  |dzj and x   =    I    cos 0 |dz| (31) 

'AI ^AI 

where   0 = arg £  is the slope of the cavity wall and the integration is to be per- 

formed along the free streamline from   A   to   I.     Now if   argt] = * = vO/Zp 

along   AIA'   one has 

t    =   sin *    = sin (w G/2p)   . 

Also,  on this contour,   since   | £ |   =   1,    then   |dz|   =   jd W |   from Eq. (3) and 

hence, from Eq. (2 c) and the above value for   t, 

|dz|    = (cosa sin a)bA* cos^rdi/r 

where 

A«   =   (1 - cos*a cos* + )"*/2      . 

Then,  by employing Eq.  (9) to obtain dimensionless forms, one finds that 

and 

a     - YTOTOTPI  ' (33) 

where for convenience the abbreviations 

T 
•7 

R(o,p)   =   I    cos (if*) cos* *' d*     , (34) 
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and 

S(Q, p)        =   I     sin (i£ ^) sin ^  A'd^ (35) 

have been used.     (If one wished to plot the shape of the cavity wall,  the lower 

limits would be changed accordingly. ) 

The integrals   R(a, p)   and   S(a, p)   have been computed by expanding 

sin(Zp ^/*)   and   cos (2p ^f/ir) in Fourier series,   and then integrating term by 

term.     Hence the construction of suitable series for   sin \ty    and   cos X^r    will 

now be considered,  where   \ - 2p/ir. 

EXPANSION IN SERIES OF SIN X +    AND COS X^ 
10 

If   X   is not an integer,  the well-known series 

..           2X     .    . cos \4f    n       sinXir 
T IT 2X*       £, n*-X* 

"•I     fctm nU' 

n«  -  X8 

is convergent and may be integrated term by term.     When this is done three 

times (the constants of integration being properly evaluated),  the following 

series is obtained: 

sin 
GO 

X*      -   GX*    +HX*5   +XDr.,X8inn* 
nil 

(36) 

where for convenience the notation has been used that 

CO 

n \n   - \ ) mi 

(36a) 

H, 
ir 

—   sin X n    , (36b) 

and 
n*i 

D       =   X4(i- sinXw)  -LzlL 
DX W n8(n8-X*) 

(36c) 

It is now necessary to find trigonometric series for   ty   and   i^5  .     These can 

easily be constructed froir. the series 
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4 w   U (2n+l)5 
(37) 

and 

*»-*•* = -i2 f; (-i)"*' «zf± (38) 

since integration of the first yields an expression for   ^°    - 3w /4 ,  which can 

then be solved simultaneously with the second to obtain two new series, one for 

^f   ,    and one for \^s   .    These are 

GO 

*     =      2   Bnsinn* (39) 
n«i 

and 

where 

oo 

*S   =       Z   Fn 8inn* 

B 

B 

7t4 n5    L nw        " T2" 

11,520      J^ 

7t4 n9 

i    n—1| J| J« g < | 

n=2, 4,6.,., 

(40) 

(41) 

and 

& 
n 

4x360 1     f.    .   .{T    2 37 w" 
rr • -i h-t-1)    nT + n-3To- 
f ir n     L 

24x360       J_ 

7*2      '    na 

,  n=l, 3, 5..., 

n=2, 4,6.... 

(42) 

Then the series for   sin X ^       can now be written 

oo 
sinXt//        =      }     g    sinnt^ 

n«l 

where 

(43) 

g       =GXB     +   H. F     +   D   .    . •n X.    n X    n n X (43a) 

Also the above series for   sinX^/    may be integrated once to obtain 
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oo 

cos \ i^    =   b    + X     ^>       h    cos n <p (44) 

in which 

and 

oo 

=    1 - X. o =    1      X     £    i. (44a) 

hn        =   gn/n     . (44b) 

The values for   a     and   h     are presented in Table 10. Bn n r 

EVALUATION OF INTEGRALS   R(o, p) AND S(a, p) 

The problem of finding the integrals   R(a, P)   and   S(a, p)   can now,  by apply- 

ing Eqs.  (43) and (44),  be reduced to summing infinite series which contain 

integrals of the type 

7 
sinn ^    A'(  $ ) d$ (45) 

and 

f 
cosn <//   A'( ^/ ) dt// . (46) 

' o w* O 

By writing   sinni/f       and   cosnf      in terms of powers and products of sin \p 

and cos ty 

of the type 

and cos ty    ,    the integrals   I     and   J     can be written as sums of integrals 

I I 
sinp^   cosq^     A'(^)d^      . (47) 

o 

Such integrals can always be reduced by integration by parts to known elementary 

functions or complete elliptic integrals.     For the present work,  values of the 

integrals   I     and   J     have been computed for a range of   a,    and the results are 

shown in Table 9.     Also an estimate ot   Al   is shown,   where 

Al     =   I   ..  - I    , n> 6 (48) n+1       n x     ' 

since this quantity is used in a later computation. 
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With the values of   A ,    b ,    I ,    and   J  ,    it is easy to find   R   and   S, n       n      n n 
since, from above,  there results 

R(o, p) 
sin a 

+ X 
oo 

n*i 
h J n n (49) 

and 

S(a.P) 
oo 

n*i 
•n n (50) 

These series were computed for a sufficient number of terms to assure 

reasonable accuracy.     In the case of   R(a, p),  the series converges very rapidly 

so that only five terms are necessary to obtain an accuracy of  _+ 0. 1%.     The 

series for   S(o, P),   however,  requires at least seven terms,  and a further correc- 

tion was made by a procedure as follows. 

If   a   is small,  the values of   (I     . - I  )   are almost equal for   n > 6   or so, 

as can be seen from Table 9.     Hence for an improved estimate of   S   we write 

7 15 is 

(51) 
n»8 n = e 

For   a =2 5  ,    the resulting values are accurate to within   + 0.1%,    while for 

a < 5  ,    the values obtained are within   + 0.15%.     A summary of these results 

is given in Tables 5 and 6.     The values of   R(a, p)   and   S(a, p)   have then been 

used with those for   Y(0, a, p)   from Table 2,  to find   x/a   and   y/a ; the results 

are presented in Tables 7 and 8. 

For the case of   p = w/2,    the integral   R(a, p)   can be expressed in terms 

of elliptic integrals and   S(a, p)   can be expressed by simple functions,  as was 

shown by Riabouchinsky.     There results 

R(a,4-)   = 1 
2 2 sin a cos a 

E«(o) - sin a K«(a) (52) 

and 

s(o ») =    1 :sino 

Then for Riabouchinsky1 s case 

cos a sin a 
(53) 

x_ E' - sin'aK 
a sin8o + E - cos*aK (54) 
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and 
X  «   8ina * - sinn  (55) 
a sin* a + E - COS8QK 

The values from these equations are included in Tables 5,   6,   7 and 8. 

The principal cavity dimensions can now be calculated from the formulas 

^   -   1 + c.cp-I (56) 

and 

-g-    =cotp + cscp~-     . (57) 

These parameters are plotted in Figs. 5 and 6.     In Fig.  7,  the ratio     $ /d^ 

is shown.      This wi 

asymptotic values. 

m 
is shown.     This will be discussed further in the section below concerning 

APPROXIMATIONS FOR LOW CAVITATION NUMBERS 

If the cavitation number   or   is small,  which implies that   a   ii-small, 

suitable approximation may be made to evaluate the several integrals discussed 

above.     For example,  in calculating the drag coefficients, one may use the 

first approximations 

Y(0,a,p)       =   Y(0,0,p) + 0(a?) (58) 

and ^w ^2. 

I    Pd Y(0,a.p)        =1    PdY(0,0,p) + 0(o2) (59) 

so that the drag coefficient becomes,   as is well known, 

CD      =   (l + cr)CD(0,p)   +   0(a8) (60) 

The same approximation holds for three dimensions. 

For computing the pressure distribution one may then use the approxima- 

tion for small   a 

3fc# - Wf • c«) 
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At very low   a,  the ratio is independent of   p,  being asymptotic to   l/r. 
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If instead of the pressure one plots 

1 p-Pk 

l+o-       ±pv« 
=   P<rf,P) (62) 

oo 

a dimensionless representation is obtained which is exact when   a = 0   and is a 

useable approximation for any small cavitation number (Fig.   3).     The accuracy 

of the approximation may be noted by comparison with the exact values in Ref.  5. 

It appears that the error will be less than a percent or so if   a $ 5    (see Table 1 

for corresponding values of  or ). 

To find   R(a, p)   and   S(a, p)   when the cavitation number is small,  it is 

only necessary to obtain approximations for   sin X^r   and   cos X^   which are ac- 

curate near the origin.     For this purpose one may write   sin \\}>   «=s   X sin ty 

Then 

cos X^  as   1 —   sin*^ , (63) 

so that for a first approximation 

ff        V' 
R =      /    (1 - -y-   »in8«//   ) cos }ff  A«( ^   , o) d + 

«      I    cos ^  A'(^   ,a) d+    - -j-     I    sin*^   cos ^ A'( ^   ,o) d^ 
Jn -'a 

* 1 .   1 + -J—     tn  i±££i£    . (64) 
sin*a 2 cosSa 2 cos a 1-cosa 

For   a—• 0,  we have 

R(a,P)   =  -V     • (65) 
sin a 

As   a—* 0,  the approximation   sin X^      =   X sin ^    may also be used to evaluate 

S,    so 

,.,,   -   X jf 
f 

S(a,p)   -   X    /    sinf  cos^   A'd^ (66) 
'0 

X 
=  sin a     * 
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Then for   a—»0   the cavity length-width ratio become* 

m 
=   Ift^lr = TiTnT <67> 

But for   a —* 0   we have 

T     *   2X sin a (68) 

so that 

I 

m 
(69) 

Hence at low cavitation numbers the principal cavity dimensions are independent 

of nose shape,  being functions of   <r   only.      A similar result was found by 

Reichardt      for three-dimensional cavities. 

It will be found that the approximations given above will enable extension of 

the values in Tables 5,  6,   7,  and 8 to lower cavitation numbers with reasonable 

accuracy. 
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TABU! 1 - THE CAPTATION NUMBER,    *<o, p) 

• P-15° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165° 

0° 0.0000 0.0000 0. 0000 0.0000 0.0000 0.0000 0. 0000 0.0000 0. 0000 0. 0000 0.0000 
* 0.0058 0.0117 0.0176 0.0235 0. 0295 0.0355 0.0416 0.0476 0.0538 0. 0599 0.0661 
2 0.0117 0.0235 0.0355 0.0476 0.0598 0.0722 0.0S48 0.0974 0.1103 0.1232 0.1364 
3 0.0176 0.0356 0.0538 0.0724 0.0913 0.1105 0.1301 0.1500 0.1702 0. 1909 0.2118 
4 0.0236 0.M7? 0. 0724 0.0977 0. 1235 0.1500 C. 1771 0.2049 0.2333 0. 2623 0.2921 

5 0.0296 0.0600 0.0913 0.1236 0. 1568 0.1910 0.2262 0.2624 0. 2997 o. mi 0.3777 
10 0.0602 0.1241 0.1918 0.2635 0. 3396 0.4203 0.5058 0. 5965 0. 69 «i 0.7945 0.9026 
IS 0.0923 0.1931 0. 3032 0.4235 C. 5549 0.6984 0.8551 1.0264 1.2134 1.4177 1.6408 
20 0.1261 0.2682 0.4281 0.6083 0.8112 1.0396 1.2969 1.5866 i.9129 2. 2803 2. 6940 
25 0.1622 0. 3506 0. 5697 0.8242 1.1201 1.4639 1.8635 2. 3279 2.8676 3.4948 4.2237 

30 0.20O9 0.4423 0.7321 1.0801 1.4981 2.0000 2.6028 3.326' 5.1962 
35 0.2431 0.5453 0.9210 1. 3880 1.9685 2.6902 3.5873 
40 0.2896 0.6630 1.1445 1.7655 2. 5663 3. 5989 
45 0.3415 0.7996 1.4142 2.2387 3.3447 

TABLE 2 - THE INTEGRAL   Y(0, a. 0) 

1  
a a-i5° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165° 

0° 0.59401 0.71443 0.87184 1.0822V 1.JT195 1.78543 2.40471 3. 39686 5.15664 8.87842 20.55725 
1 0.59415 0.71461 0.87208 '..08260 1.37237 1.78601 2.40555 3. 39809 5.15863 3.88205 20.56616 
2 0. 594 58 0.71517 0.87278 1.08353 1.37362 1.78774 2.40801 3.40180 5. 16459 8.89293 20.59291 
3 0.59531 0.71609 0.87396 1.08509 1.37571 1.79062 2.41213 3.40797 5.1745i 8.91108 20.63746 
4 0.59631 0.71738 0.87562 1.08727 1. 37864 1.7946t 2.41791 3.41660 5.18844 8.93647 20.69985 

5 0. 59760 0.71904 0.87774 1.09007 1. 38240 1.79985 2.42533 3.42771 5. 20632 8.96913 20.78006 
10 0. 60858 0.73300 0.89582 1.11385 1.41436 1.84399 2.48844 3.52238 5.35898 9.24832 21.46678 
IS 0. 62762 0.75736 0.92745 1.15575 1.47115 1.92315 2.60292 3.69665 5.64503 9.78311 22.81780 
20 0.65529 0.79276 0.97331 1.2162? 1.55255 2.03556 2.76341 3.93657 6. 02969 10.48055 24.51212 
25 0.69356 0.84189 1.03744 1.30136 1.66807 2. 19659 2. 99594 4.28896 6. 60392 11.54 241 27.15383 

30 0.74451 0.90768 1.1236* 1.41646 1.82512 2.41681 3.31584 4.77666 7.40369 13.03090 30.88178 
35 0.81149 0.99468 i. 23846 1.57076 2.03710 2.71615 3.75382 5.449S1 8.51562 15.11691 36.14913 
40 0.89944 1.10981 1. 35153 1.77819 2. 32453 3.12554 4.35817 6. 38651 10.07890 18.07856 43.70293 
45 1.01573 1.26347 1.S9T91 2.06056 2.71977 3. 69456 5.20743 7.71805 12.32599 22. 38586 54.82158 

TABLE 3 - DRAG COEFFICIENTS FOR TWO-DIMENSIONAL WEDGES, CD(a. 0) 

a 6-15° 30° 45° 60° 75° 90° 105° 120° 13S° .„• ,«• 

0° 
5 
10 
15 
20 

25 
30 
35 
40 
45 

0.2838 
0. 2927 
0. 3029 
0.3146 
0.3281 

0.3436 
0.3618 
0.3829 
0.4080 
0.4378 

0.4885 
0.5185 
0.5521 
0.5901 
0.6330 

0.6826 
0.7401 
0.8076 
0.8880 
0.9853 

i 

0. 6370 
0. 6959 
0. 7624 
0.8385 
0.9258 

1. 0278 
1.1481 
1.2922 
1.4676 
1.6852 

0.7448 
0.8375 
0.9443 
1.0688 
1.2148 

1.3899 
1.5993 
1.8574 
2.1803 
2. 5927 

0.8230 
0.9528 
1.1057 
1.2880 
1.5073 

1.7754 
2.1080 
2. 5274 
3.0676 
3.7806 

0.8798 
1.0482 
1.2522 
1.5016 
1.8097 

2.1966 
2.6898 
3.3308 
4.1830 

0.9207 
1.1293 
1.3885 
1.7U2 
2.1279 

2.6621 
3.3634 
4.3031 

0.9498 
1.1993 
1.5180 
1.9297 
2.4676 

3. 1825 
4.1497 

0.9703 
1.2613 
1.6436 
2.1514 
2.8346 

3. 7695 
5.0738 

0.9845 
1.3176 
1.7674 
2. 3825 
3.2346 

4.4364 

0.9939 
1.3694 
1.8914 
2.6259 
3.6741 

5. 1975 

TABLE 4 - DRAG COEFFICIENTS FOR CONES OF REVOLUTION,    CD(a, 6) 

• 0.15° 10° 45° 60° 75" 90° 105° 120° 135° 150° 

1 1 
165° 

0° 
5 
10 
IS 
20 

29 
30 
35 
40 
45 

0.2045 
0.2108 
0.2184 
0. 2275 
0.2379 

0.2501 
0.2648 
0.2818 
0. 3022 
0. 3270 

0.3758 
0.3990 
0.4255 
0.4557 
0.4906 

0.5311 
0.S78S 
0.6355 
0. 7039 
0.7875 

0.5181 
0.5664 
0.6213 
0.6849 
0.7586 

0.8456 
0.9494 
1.0749 
1.2296 
1.42A6 

0.6350 
0.7143 
0.8064 
0.9147 
1.0429 

1. 1969 
1.3847 
1.6173 
1.9110 
2.2899 

0.7296 
0.6450 
0.9817 
1.1459 
1.3445 

1.5892 
1.8950 
2.2835 
2.7882 
3.4593 

0.8053 
0.9S99 
1.1477 
1. 3787 
1.6683 

2. 0274 
2.4916 
3.0988 
3.9109 

0.8646 
1.0609 
1.3054 
1.6140 
2.0072 

2.5171 
3. 1898 
4.0950 

0.9101 
1. 1495 
1.4559 
1. 8527 
2. 3725 

3.0655 
4.0061 

0.9442 
1.2276 
1,6004 
2.0966 
2.7649 

3.6817 
4.9635 

0.9693 
1.2972 
1.7407 
2. 3478 
3.1891 

4.3779 

0.9874 
1.3604 
1.8792 
2.6097 
3.6525 

5.1686 
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TABUS 5 - THE INTEGKAJL   R(«, ?) 

1 1 

a 8-15° XT „• 60° 75° 90° 105° 120° 135° 150° 165° 

0° CO 00 00 CO 00 CD 00 ao ao ao 00 

1 3283.1 3283.1 3282.9 3282. 6 3282.0 3281.2 3280.5 3279.9 3279.5 3279.1 3278.2 
2 821.00 820. 89 820.68 820.3? 819.98 819.41 818.84 818.22 817.63 816.97 816.14 
3 365.06 364.95 364.76 364.51 364.12 363.68 363.17 362.63 362. 05 361.42 360.69 
4 20S.48 205.37 205.20 204.96 204.63 204.23 203.79 20J.29 202. 76 202,18 201.52 

5 131.61 131.52 131.36 131.13 130.83 130.47 130.07 129.61 129.12 128.59 128.00 
10 33.139 33.067 32.948 32.781 32. 569 32.315 32.021 31.694 31.337 30.955 30.551 
IS 14.909 14.851 14. 755 14.622 14.455 14.256 14.027 13.773 13.498 13.205 12. 898 
20 3.5323 8.4838 8.4038 8. 2936 8.1553 7.9908 7.8037 7. 5965 7. 3726 7.1352 6.8870 
25 5. 5853 5.5447 5.4778( 5.3854 5. 2690 5.1222 4.9723 4.7969 4.6073 4.4068 4.1988 
30 3.9877 3.9512 3.8910 3.8086 3.7056 3.5836 3.4460 3.2947 3. 1328 2.9631 2. 7885 

TABLE 6 - THE INTEGRAL.   S(a, 8) 

a 8.15° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165° 

0° 00 00 go 00 CO 00 ao ao 00 ao ao 
1 9.4323 18.861 28. 273 37. 659 47.01! 56.316 65.578 74.790 83.966 93.175 102. 36 
2 4.6529 9.3010 13.936 18.550 23. 136 27.687 3?. 20< 36.678 41.116 45.546 49.939 
3 3.0615 6.1179 9.1618 12.187 15.188 18.157 21.094 23.994 26.857 29.700 32.504 
4 2.2668 4.5235 6.7784 9.0108 11.220 13.401 15.551 17.665 19.744 21.797 23.811 

5 1.7910 3.5768 5.3514 7.1091 8.8450 10.554 12.234 13.879 15.490 17.073 18.617 
10 0.84477 1.6845 2.5155 3.3322 4.1306 4.9067 5. 6579 6.3804 7.0725 7. 7340 8.3608 
15 0. 53607 1.0678 1.5909 2.1013 2.5953 3.0693 3. 5030 3.9479 4.3480 4.7200 5.0635 
20 0. 38504 0.76618 1.1396 1.5016 1.8490 2.1787 2.4879 2. 7749 3.0384 3.2772 3.49«4 
25 0. 297i6 0. 59074 0.87732 1.1535 1.4164 1.6633 1.8918 2.100? 2. 2874 2.4524 2.5945 
30 0. 24052 0.47777 0.70856 0.92985 1.1389 1.3333 1.5110 1.6704 1.8106 1.9306 2.0300 

TABLE 7 - THE PARAMETER   »/•   WHICH FIXES THE CAVITY LENGTH (Fig.   1) 

a 6.15° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165° 

0° ao ao ao ao ao OD ao ao 00 co ao 
1 5526. 4594. 3764. 3032. 2392. 1837. 1364. 965.2 635.7 369.2 159.4 
2 1381. 1148. 940.3 757.1 597.0 458.4 340.0 240.5 158.3 91.87 39.63 
3 613.2 509.6 417.4 335.9 264.7 203.1 ISC. 6 106.4 69.97 40.56 17.48 
4 344.6 286.3 234.4 188.5 148.4 113.8 84.28 59.50 39.08 22.62 9.736 

5 220. 2 182.9 149.6 120.3 94.64 72.49 53.63 37.81 24.80 14.34 6.16b 
10 54.45 45.11 36.78 29.43 23.03 17.52 12.87 8.998 5.848 3.347 1.423 
15 23.75 19.61 15.91 12.65 9.826 7.422 5.389 J.726 2.391 1.350 0.565 
20 1?.02 10.70 8.634 6.819 5.253 3.926 2.824 1.930 1.223 0.681 0.281 
25 4.053 6.586 5.280 4.138 3.159 2.332 1.660 1.118 0.698 0.382 0.155 

30 5.356 4.353 3.463 2.689 2.030 1.483 1.039 0.690 0.423 0.227 0.093 
35 3.732 3.012 2.376 1.826 1.363 0.983 0.679 
40 2.680 2. 145 1.676 1.274 0.939 0.668 
45 1.960 1.554 1.201 0.902 0.656 0.459 

TABLE 8 - THE PARAMETER   y/«   WHICH FIXES THE CAVITY WIDTH (Fig.  1) 

a p. 15° 30° 45° 60° 75° „• 105° 120° 135° 150° 

  
165° 

0° ao OD ao ao as CO ao CD ao OD ao 
1 15.88 26.39 32.42 34.79 34.26 31.53 27.26 22.01 16.28 10.49 4.977 
2 7.826 13.01 15.97 17.12 16.84 15.49 13.37 10.78 7.961 5. 122 2.425 
3 5.143 8.544 10.48 11.23 11.04 10.14 8.745 7.040 5.190 3.333 1.575 
4 3.801 6.313 7.741 8  288 8.138 7.467 6.431 5.170 3.805 2.439 1.150 

5 2.997 4.974 6.097 6 522 6.398 5.864 5.044 4.049 2.975 1.904 0.896 
10 1. 388 2.298 2.806 2.992 2.920 2.661 2.274 1.811 1.320 0.836 0.389 
15 0.851 1.410 '.715 1.818 1.764 1.598 1.346 1.068 0.770 0.482 0.222 
20 0.588 0.966 1.171 1.235 1.191 1.070 0.900 0.705 0.504 0.313 0.142 
25 0.428 0.702 0.846 0.886 0.849 0.757 0.631 0.490 0.346 0.212 0.096 

30 0.323 0.526 0.630 0.656 0.624 0.552 0.456 0.350 0.244 0. 14« 0.066 
35 0.248 0.403 0.478 0.494 0.466 0.408 0.333 
40 0.193 0.311 0.366 0.375 0.350 0.303 
45 0.151 0.240 0.280 0.284 0.262 0.224 1 
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TABLE 9 - THE INTEGRALS   I (a),    AI (a),    AND   J (a) 

• h h •, •« '5 »6 h Al Jl J2 J3 

1° 56.316 111.524 165.084 217.04 267.59 316.80 364.62 46 3281.3 3275.7 3267.5 
2 27.b87 54.300 79. 328 102.84 125.08 146.12 165.95 18 819.42 814.93 808.42 
3 18.157 35.270 50.859 65.023 78.020 89.957 100.73 8 363.68 359. 77 354.27 
4 13.401 25.787 36. 707 46.283 54.796 62. 367 69.010 5 204.24 200. 76 195.97 
5 10.554 20. 122 28. 277 35.166 4 1.084 46.169 50.442 2 130.477 127.326 123.024 

10 4.9067 8.9518 11.798 13.726 14.940 15.900 16. 109 -0.4 32.314 30. 124 27.346 
15 3.0693 5.3772 6.6837 7.2059 7.4500 7.2652 7.1364 -0.3 14.256 12. 580 JO. 576 
20 2.1787 3.6775 4.3150 4.3886 4.2591 4.0656 3. 7990 -0.3 7.9910 6. 6307 5.1142 
25 1.6633 2.7136 3.0134 2.8717 2.6356 2.4177 2.1842 •0.2 5. 1306 3.9865 2.8047 

30 1.3333 2.1088 2.2222 1.9862 1.7284 1.5364 1.3532 -0.2 3. 5839 2.6121 1.6396 
35 1.1080 1,7037 1.7084 1.4334 1.1868 1.0326 0.8971 2. 65*1 1.8204 0.8912 
40 0. 9470 1.4196 1.3588 1.0715 0.8469 0.7289 0. 6308 2.0859 1.3322 0.6416 
45 0. 8284 1.2140 1. 1127 0.8260 0. 6255 0.5381 0.4683 J. 6942 1.0140 0.4150 

TABLE 10 - THE COEFFICIENTS gjB)   AND   hn(B) 

B 9-15° 30° 45° 60° 75° 105° 120° 135° 150° 165° 

!.(•) 
.282143 .541363 . 756806 .911554 .994212 .931349 .797843 .615545 .405599 .192216 

-. 084996 -.152410 -.186657 -.175962 -.113818 .158948 .349816 .553495 .746517 .903423 
.022288 .039581 .047670 .043827 .027361 -.033885 -.067471 -.09:470 -.095212 -.067787 

-.002656 -.004763 -.005831 -.005488 -.003532 .004725 .009783 .013766 .014761 .010691 
-.000371 -.000615 -.000653 -.000484 -.000206 -.000056 -.000474 -.001147 -.001700 -.001527 
-.000350 -.000627 -.000763 -.000723 -.000465 .000618 .001272 .001772 .001874 .001332 
.000471 .000831 .000991 .000900 .000552 -.000651 -.001249 -.001621 -.001596 -.001059 

-.000083 -.000149 -.000181 -.000168 -.000111 .000146 .000300 .000369 .000438 .000311 
-.000065 -.000112 -.000127 -.000110 -.000059 . 000049 .000070 .000055 .000016 -.000013 

10 -.000027 -.000049 -.000060 -.000059 -.000037 .000048 .000099 .000137 .000147 .000100 
11 UO0097 .000179 .000225 .000215 .000141 -.000185 -.000373 -.000497 -.000498 -.000331 
12 -.000011 -.000019 -.000024 -.000022 -.000015 .000019 .000038 .000053 .000057 .000041 
13 -.000018 -.000030 -.000038 -.000033 -.000018 .000017 .000027 .000028 .000019 .000008 

•.<« 
0 .958946 .840992 .661122 .442207 .212099 -.167520 -.270250 -.297693 -.251004 -.143633 
1 .2*2143 .541363 .756806 .911554 .994212 .931349 .797843 .615545 .405599 .192216 
2 -.042498 -.076205 -.093328 -.087981 -.056909 .079474 .174908 .276747 .373258 .451711 
3 . 007429 .013194 .015890 .014609 .009120 -.011295 -.022490 -.030490 -.031737 -.02259C 
4 -.000664 -.001191 -.001458 -.001372 -.000883 .001181 .002446 .003441 .003690 .002673 
5 -.000074 -.000123 -.000131 -.000097 -.000041 -.000011 -.000095 -.000229 .000340 -."00305 
6 -.000058 -.000104 -.000128 -.000120 -.000077 .000103 .000212 .000295 .000312 .000222 
7 .000067 .000119 .000142 .000129 .000079 -.000093 -.000178 -.000231 -.000228 -.000151 
8 -.000010 -.000018 -.000023 -.000021 -.000013 .000016 .000031 .000039 .000038 .000024 
9 -.000007 -.000012 -.000014 -.000012 -.000007 . 000007 .000011 .000012 .000010 .000006 
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